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ABSTRACT 

Results of tests for the optimum over-relaxation coefficients in the numerical relaxation of the omega equation 
we presented. One case considers a strong upper-level development for tests on a fixed grid using one-, two-, and 
three-dimensional forms of the omega equation. In the other case of a “classical storm” the omega equation is 
relaxed in its three-dimensional form using several different horizontal grids. 

In the three- 
dimensional tests, the observed over-relaxation coefficients are found to be less than the values given by the theory 
for all grid sizes considered. A sharp cut-off is found to occur shortly after the optimum over-relaxation value is 
reached regardless of the number of dimensions of the equation or the size of the grid. 

For the one- and two-dimensional tests, the relaxation scheme agreesv ery well with theory. 

1. INTRODUCTION 

The meteorologist is oft& faced with the problem of 
solving second-order, linear, partial-diff erential equations 
involving 1, 2, or 3 space dimensions. In  these days of 
high-speed computers a solution is normally obtained by 
one of the various relaxation methods, such as the 
Richardson or Liebmann method. These techniques are 
discussed to  a point in the literature (Frankel [3], Young 
[12], Fox [2], Miyakoda [7], and Haltiner et al. [5]). The 
discussion generally centers around the computer ap- 
plicability and the speed of convergence of relaxation 
techniques. The extrapolated Liebmann method is con- 
sidered more applicable t o  the computer than the Richard- 
son method, since the former method requires the storage 
of only one complete set of approximated values. The 
usefulness of the extrapolated Liebmann method centers 
around one’s ability to obtain an optimum over-relaxation 
coefficient. Theoretical studies (Frankel [3], Young [12], 
Miyakoda [7]) yield good estimates of the optimum over- 
relaxation factor for one- and two-dimensional equations. 
Young [12] and Miyakoda [7] have tested the three- 
dimensional equation, but the theory permits only a 
limited treatment. 

In  this note we present some results of tests for the 
optimum over-relaxation coefficients which are used in 
the numerical relaxation of the omega equation by the 
extrapolated Liebmann method. The first tests are made 
on a fixed grid in the study of a strong upper-level develop- 

’ The information in this note was taken from (SI and p l ] .  
2 On leave of absence from Florida State University. 

ment along the west coast of the United States. Optimum 
coefficients are determined for one-, two-, and three- 
dimensional forms of the omega equation, and these 
results are compared to the theoretical estimates. In  
the second set of tests the omega equation is relaxed in 
its three-dimensional form with several different horizontal 
grids. The synoptic situation in the latter tests is a 
“classical storm” in the stage of occluding over the central 
United States. From these second tests we are able to  
add to Miyakoda’s work for estimating the optimum 
over-relaxation c,oefficient when testing with real meteor- 
ological equations such as the omega equation. 

2. THE OMEGA EQUATION 

The omega equation, or the equation for computing the 
large-scale vertical motion, may be written in general 
terms as: 

b2W 
(1) B ( P ) V ; w + ~ = G ( x ,  Y, P )  

where G(x ,  y, p )  is the forcing function and is known from 
the geopotential data; m=dp/dt and is the vertical compo- 
nent of motion in the p-coordinate system; B ( p )  =u(pjj;2 
is known by specification of the static stability u as a 
function of pressure and jo, an area-averaged Coriolis 
parameter. Equation (1) is the final form in the 
development utilizing the quasi-geostrophic filter and 
maintaining energy consistency in the alterations of the 
primitive hydrodynamical equations (Charney [l] and 
Lorenz [SI). 
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The numerical solution of the omega equation is accom- 
plished through use of centered finite differences leading 
to an equation of the general form: 

ut. j+l, p + w i + l , j .  p S w i ,  1-1. p + w t - 1 , 5 ,  p - Z 5 p w i h 7  

+K*,P Lwi. ,, P+AP+% j .  P - A P ~ = ~ ~ ~ P  ( 2 )  
where 

Here a is the horizontal grid interval, Ap is the vertical 
grid interval, and m is a map projection factor (approxi- 
mately equal to unity). This form of the difference 
equation is employed when testing the complete equa- 
tion (1) or the following two-dimensional equation 

(3) 

I n  this two-dimensional case equation (2) is modified by 
setting Kijp=O. When we treat the following one- 
dimensional equation 

(4) 

the finite difference equation is written as: 

mi. ?. p+ap+2wijp+wi, J .  p - ~ p = ( A ~ ) 2 G i i p = G i  j p .  ( 5 )  

Hence, whether we are testing equation (2) or (5) we 
are dealing with a difference equation of the form 

u o ) = L l , p  (6) 

where the form of the right hand side and of the difference 
operator are determined by the nature of the equation 
being handled, i.e., equation (l), (3), or (4). We are 
primarily concerned with the three-dimensional equation 
(I), but include tests on the one- and two-dimensional 
equations ( 3 )  and ( 4 )  because they can be handled by a 
simple generalization of our computer program. These 
latter two equations allow us to verify our technique 
against the theory for cases in which the theory is 
complete. 

The finite-difference approximation of the oniega equa- 
tion is then solved by the relaxation method. An initial 
guess of the solution of o at  each grid point is made and 
the necessary operations, r, are performed. The result 
of this calculation is then compared with the right-hand 
side for the case of the correct solution. The difference 
between the actual right-hand side and that computed on 
the basis of the guess of w is: 

(7) 

\diere RN is called the residual and N is the number of 
scans. The relaxation technique arrives a t  an approxi- 
mate solution to w by the relation: 

wN+1= &’ f &N ( 8) 

a is the over-relaxation factor and is the critical parameter 
if equation (8) is to work quickly, or a t  all, for solving 
equation ( 1 ) .  In practice, we set oo=O for the initial 
scan, N=O, and apply equation (8) repeatedly a t  all grid 
points where lRNl>e. Here e is a preset tolerance. 
This procedure terminates when lRNl Ie at  all grid points. 
Since we apply equation (8) only to points where IRNJ>€, 
our extrapolated Liebmann relaxation scheme differs 
slightly from the scheme analyzed theoretically by Young 
[12] and Miyakoda [7]. For this reason we did not use 
superscripts of N ,  N+1, etc., on omega in equations ( 2 )  
and ( 5 ) .  Haltiner et al. [5 ]  varied from the relaxation 
scheme (8) by introducing a variable in the second term 
on the right-hand side of equation (8). They state that 
this Helmholtz-type relaxation appeared to converge 
more rapidly than our procedure. 

The theoretical studies mentioned above give some aid 
in the determination of the optimum a(aopl).  These 
studies show that aOp1 depends on the number OI grid 
points in each direction (Nz,  N,, N p ) ,  on the nature of 
the equation itself (i.e., one, two, or three dimensions), on 
the parameter K i j p  (hence on U ,  a,  to, and Ap in our case), 
on the type of relaxation scheme used, but not on Lijp 
(the forcing function) as one might suspect. These 
studies are quite useful for the one- and two-dimensional 
equations. However, they treat a three-dimensional 
equation where B ( p )  is constant. When dealing with 
the omega equation (1) the researcher must resort to a 
sort of trial and error method to determine the optimum 
cy in his case. Guided by Miyakoda’s theoretical results 
and our actual results for an equation with variable 
B ( p ) ,  me feel that this trial and error method can be 
reduced or eliminated. 

3. FIXED-GRID STUDIES 
The numerical model used in this note yields w a t  the 

four levels of 200 mb., 400 mb., 600 mb., and 800 mb. 
The input uses contour heights from 10 levels a t  100-mb. 
intervals. The boundary conditions are o = O  at p=O 
and 1000 mb., and w = O  along the horizontal boundaries. 
The fixed gridused hereis a 20x20  array with a 2’ latitude 
grid interval with 6 points along each vertical (i.e., 
Ap=200 mb.). Tho grid is centered about an area along 
the west coast of the United States encompassing the 
upper-level development of 1200 GMT, September 30, 
1959 (Stuart [lo]). The static stability values are those 
of the standard atmosphere for the four levels of output 
(see table 1 )  and f 0 = 8 . 9 X 1 0 - 5  set.-' Even though 

TABLE 1.-Values of the static stability, u. 

U= -- - in units of m? cb.-’ ton-’ 

p _____.._..... I800mb. I600mb. I400mb. I 200mb. 

as 
e dP 

c ......__..... I 1.178 1 2.015 I 4.252 1 44.664 
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I l D l l  a cut-off 
Equation Observed Scans N 

Theory Observed 
_ _ ~ _ _ _ _ _ _ _  

initial contour heights are available over an array of 
20x20, the relaxation involves an array of 18x18 at  each 
of the four levels plus the upper and lower boundary 
points. This yields w values a t  1024 interior grid points. 

The experiments in this study with the fixed grid of 
2 O  consisted of solving equations (l), (3), and (4). We 
will now comment on these results. 

Figure 1 is a plot of a versus the number of scans, N ,  
in the relaxation of the three equations (l), (3 ) ,  and (4). 
The tolerance for these curves is cb./sec. for an 
omega output of the order cb./sec. The three- 
dimensional (3-D) curve shows a sharp cut-off near 
a=0.35. Convergence never was obtained for a=0.35, 
but the program had been instructed to stop at  N=200. 
Since many points were still to be relaxed, it is felt that 
the a-curve probably becomes tangent very close to the 
a=0.35 line. The sharp cut-off shows the importance of 
such a-studies, since the use of a=0.35 would yield no 
convergence. The optimum a is approximately 0.32 for 
N=44. The relatively gentle slope of the a-curve to 
the left of the optimum values suggests choosing an 
a-value on that side to cover oneself for slight variations 
that exist from one case to another. Gates and Riegel 
[4] also report results showing the sharp transition to 
non-convergence above the optimum a-value for a 
similar study. 

For the two-dimensional (2-D) curve the optimum a is 
near 0.44 for N=53 with a cut-off suggested near a=0.50, 
again stopping the test a t  N=200. The u appearing in 
B(p)  was arbitrarily taken as a=2  m.t.s. units for the 2-D 
relaxation. Because of the smoothness of this a-curve, 
the choice of a is less critical as long as a <0.45. Again 
the lower a-values should be favored in choosing the op- 
timum a. 

The final curve in figure 1 shows the test for the opti- 
mum a using the one-dimensional (1-D) equation (4). 
The a-curve is very flat and has the optimum a=0.65 
for N=10, with a definite cut-off a t  a=l.OO. This 
shows that the optimum a for the 1-D equation would 
probably show only slight variations from one grid to 
another. Values between a=0.60 and 0.70 should be 
very efficient and well removed from the cut-off zones. 
Of course a problem as simple as this could probably be 
done more efficiently by other techniques altogether. 

In  all the curves of figure 1 we notice that the a-curve 
tends toward very high N values for low a. This is to 
be expected since, according to our relaxation scheme 
(equation (S)), very small adjustments are made when a 
is small. If a=O, no changes in w are made regardless of 
the R": value and since w0=O, we obtain convergence 
only for the trivial case when the actual solution is zero 
everywhere. It is possible t,hat one could obtain con- 
vergence after fewer scans if, depending on the value of 
N or R, a variable a were used. The rather low values of 
N for the optimum a make this hardly necessary even 
when wo=O. The time spent on each scan is slightly re- 

Grid Points 
___ ___--__ 

N ,  = N y  N p  
____-___---__ 

1 1 I 1 , 1 1 1 1 

220  - 
200 - 
180 - 
160 - 

v) z a 
$ 140- 

0 120-  
a 
a ioo-  

0 0  - 

6 0  - 
4 0  - 
20 - 

LL 

w 

3 z 

OVER-RELAXATION COEFFICIENT ALPHA ( a )  
FIGURE 1.-Comparison of optimum (Y values with number of scans 

required for convergence. Curves are for relaxation of three- 
dimensional (3-D), two-dimension:tl (2-D) ? and one-dimensional 
(1-D) forms of the omega equation. Tolerance is e= cb./sec. 

duced as we approach convergence since w is altered only 
for those points where IRI>c. 

Table 2 summarizes the comparison of our results for 
this study, using fixed grids, with the theoretical values. 
The theoretical optimum a-values were obtained from 
equations given in Young [12] and Miyakoda [7]. For 
both the one- and two-dimensional equations, the em- 
pirically determined c y o p l  values agree very well with the 
t,heory, as do the upper limits on a (i.e., a cut-off). These 
result's tend to suggest that our slight modification of the 
extrapolated Liebmann relaxation technique has little if 
any effect on our choice of aoPl .  The three-dimensional 
case shows poorer agreement with the theory, but we 
will discuss those results further in the next section. 

1-D .-....... 1 0.63) 0.651 l . m I  IO1 0 6 2-D ... ...... 0.41 0.44 0.50 
3-D ... .... . . 0.42 0.32 0.35 6 
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O' 
0.1:5 0.:50 0.1k5 O.:W 0.,25 0250 0275 0.3k 0325 0.:50 0.3!75 0.4bO 0.4:5 

I 
OVER-RELAXATION COEFFICIENT ALPHA 

FIGURE 2.-Comparison of the number of scans required for convergence of three-dimensional relaxation with 
the over-relaxation coefficient, a. Figures along curves indicate in degrees of latitude the grid interval 
used for the relaxation. 

4. VARIABLE-GRID STUDIES 

The numerical model and parameters of the previous 
, studies were also used in these studies, but the synoptic 

situation was a strong cyclogenetic storm of 0000 GMT, I 
November 19, 1957, and the tolerance was E =  10+ cb./sec. 
(O'Neill [9]). The experiments using the 3-D equation (1) 
consist of varying the input of contour height data ob- 
tained from four different grids. The input grid area is 
the same for all sizes, and the grid arrays are 13X 13 for 3", 
19x19 for 2", 25x25 for 1.5", and 37x37 for 1' latitude 
interval. However, as above, the relaxation was solved 
over a grid array, a t  each of four levels, of 11x11 for 3", 
17x17 for 2", 23x23 for 1.5", and 35x35 for lo, plus the 
upper and lower boundary points. The same values of 
fo, Ap,  and u were used here as in the previous studies. 

of the values obtained from the lo, 1.5", 2", and 3" latitude 
grids. The variation of the optimum a for the different 
grid sizes is considerable. The optimum a for a 3" latitude 
grid occurs at 0.225, although it may also occur between 
0.200 and 0.225 because of the small difference of only 
one scan between these two a-values. The number of 
scans, N ,  is 31, which is the smallest number for the 
optimum a of all computations. The sharp cut-off after 
the optimum a is reached occurs once again in the results 
for the 3" latitude grid and also for the other grid sizes. 
Convergence is not reached with the 3" latitude grid a t  an 
(r=0.275. No limit was placed on the number of scans, 

I Figure 2 shows the results of this test with a comparison 

but a time limit was imposed. For each grid size, the time 
permitted for the program to run was believed to be 
sufficient, if convergence were to occur. 

The smallest number of scans for the 2" latitude grid 
is 34, which occurred at  the a-value of 0.300. This value 
is only slightly less than the a=0.320 of the fixed-grid 
(2" lat.) study. Convergence is obtained in this study 
at  0.325 and again, as in the previous case, convergence 
is not reached at  the sharp cut-off of a=0.350. The 
number of scans for the optimum a of the 2" latitude grid 
is only three more than the number with the 3" latitude 
grid, but the a-value increases about 35 percent. The 
a-curve is rather flat about the optimum a, such that in 
other cases with the 2" latitude grid one should expect an 
efficient a within the range of values from 0.275 to 0.325. 

The optimum a for the 1" latitude grid continues to 
increase in value (0.400) and in the number of scans 
(N=48).  The three results for lo, 2", and 3" latitude grids 
seem to indicate that over the same area a computation 
using a large grid distance (small array) would have a 
smaller optimum a and a smaller number of scans than a 
computation using a small grid distance (large array). 
However, the results of the 1.5" latitude grid prove to  be 
quite different. The optimum a is 0.250, which is be- 
tween the optimum CY values of the 2" and 3" latitude grids. 
Also, the smallest number of scans required for conver- 
gence is 59, which is the largest for any of the optimum 
a results. This behavior of the 1.5" grid results remains 
unexplained. 
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lo... ________..______ 
1.5’________.___._._. 
Z0_____............._ 
Z0*. ________.______.. 
3” _._____________.._. 

TABLE .3.-Summary of variable-grid studies- 

48 35 6 
6 

0.45 0.400 0.450 
59 23 

6 
0.44 0.250 0.300 
0.42 0.300 0.350 34 17 

44 18 6 0.42 0.37.4 0.350 
31 11 6 0.38 0.225 0,275 

nopi  Grid Points 1- 1 1 Observed 1 1 &=N8../ NS Theory Observed 

a Cut-Off Scans N Qnd Size 

I 

‘From fixed grid results. 

One interesting feature of the plots in figure 2 is the 
number of scans for an a=0.325 for the 1.0’ latitude grid. 
This value is an increase over the previous value of 
a=0.300, and it was expected that a further increase in 
the number of scans would occur a t  the next higher a. 
However, the N for a=0.350 took a sharp decrease, and 
the optimum (Y did not occur until a value of 0.400 was 
reached. On a smaller scale this same feature occurs 
with the 3” lat. grid a t  a=0.175. 

Table 3 summarizes the comparison of our results for 
this study, using variable grids, with the theoretical 
values. The theoretical estimates for aopt were obtained 
from an equation given by Miyakoda [7] from the various 
parameters previously stated, with u=2  m.t.s. units 
(ie., K t j p  is constant in Miyakoda’s analysis). As can 
be seen from table 3, the theoretical values for aOpt are all 
over-estimates as compared to our empirical values. 
Even more important is that for all grids except the 1’ grid 
our observed a cut-off is less than aop l  as given by the 
simplified theory. Hence the effect of variable u &e., 
u=u(p))  in the factor K,,, appears to  be an observed 
cyop much below the theoretical value, with non-con- 
vergence occurring if the aOp is determined by the theory. 
Even for the 1’ grid, the aOpt given by the theory might 
lead to  trouble since the observed a cut-off occurs a t  the 
same a-value. This above-mentioned shift might also 
be due to our slightly different relaxation scheme, but 
we doubt this as a result of the success with the fixed- 
grid studies. 

By inspection of equation (2), we see that K,,, becomes 
smaller as a and fa decrease, or as u and Ap increase. 
Hence, by proper adjustment of K,,,, our 3-D equation (2) 
can become very near to  a 2-D equation. In  our studies 
we varied only a, and, indeed, the aopl  and a cut-off 
approached the theory best for the 1” grid case. However, 
in all of these studies K Z 3 ,  is very small compared to  
K’,,,; hence, all grid sizes behave much like a 2-D equa- 
tion. It appears inescapable that the variability of 
K,,, with pressure is responsible for this observed shift 
of aop l  and a cut-off. 

5. SUMMARY 

Our main conclusions can be stated as follows: 
(1) For the 1-D and 2-D equation, our relaxation 

scheme yields values of aOp that agree well with the theory. , 

Hence, the theory is a good guide for determining aOpt.  
(2) With the 3-D equation with coefficients (B(p)) 

which vary in the vertical, the observed aopl is less than 
the value given by the simple theory. This applied 
to all grid sizes considered. 

(3) The observed sharp cut-off in the a-curve occurs 
near the aopt value given by the simple theory for the 
3-D case. Hence, in solving the omega equation by a 
relaxation technique one should seek for the aoPl a t  
values lower than given by the theory and expect that the 
aOpl  given by the theory will lead to non-convergence. 
(4) A sharp cut-off will occur shortly after the optimum 

a-value is reached, regardless of the number of dimensions 
of the equation in the relaxation or of the size of the grid. 

I 
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